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ABSTRACT: Phase transition of a self-avoiding walking
polymer chain with spatial nearest neighbor ferromagnetic
Ising interaction on the simple cubic lattice is investigated
using Metropolis dynamic Monte Carlo technique. Magnetic
susceptibility x is determined from the Brillouin function and
from the linear response of magnetization to external magnetic
field in small field region. We find the later is better, though
both are in consistent with each other at high temperatures.
The magnetic susceptibility x can be expressed using the Curie
law and thus the Curie temperature 6 is estimated. The chain
length dependent Curie temperature 6 of the chain model can

be well fitted as 6 = 1.40 — 4.0 Xn %°' based on the finite-
size scaling law. The transition temperature for an infinite
long chain 6(«) = 1.40]/kz and the exponent ¢ = 0.619 are in
agreement with our previous study (J Chem Phys 2003, 119,
2439). © 2005 Wiley Periodicals, Inc. ] Appl Polym Sci 99: 969-973,
2006
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INTRODUCTION

Curie temperature, or Curie point, is the temperature
at which a ferromagnetic material being heated loses
its ferromagnetism and becomes paramagnetic. An
applied magnetic field has a paramagnetic effect on
the magnetization of materials. However, below the
Curie point, the combination of paramagnetism with
ferromagnetism leads to the magnetization following
a hysteresis curve with the applied field strength. The
Curie temperature is a second-order phase transition
and a critical point where the magnetic susceptibility
is theoretically infinite.

Magnetic properties of organic materials have been
studied for over 150 years and they have received
considerable attention since organic ferromagnet poly-
BIPO [1,4-bis(2,2,6,6-tetramethyl-4-oxyl)-4-piperidyl-
butadiin] was reported in 1987."~* The flexibility, low
loss, thin-film-forming ability, and low density will
ensure the ferromagnetic polymers play important
roles in technology,” such as in fields of communica-
tion, energy, and information. Most of the ferromag-
netic polymers synthesized are coordination polymer
composed of transition metals, such as Fe, Co, and Ni,
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and various ligands.®”® However, the ferromagnetic
polymer can also be an organic polymer,'>!" such as
poly-BIPO, p-NPNN, or even a carbon-based poly-
mer."> A considerable number of mechanisms have
been established to explain ferromagnetic interactions
among chain’s segments. Experiments on magnetic
polymer revealed that there exist ferromagnetic spin-
couplings and the spin quantum number S can be as
big as 5000."* For most cases, experimental results can
be well explained by Ising or Heisenberg interactions
among spins.®'%!3"1° The existence of a nonzero Curie
temperature depends on the interactions as well as on
the structure of the materials.

Single chain magnets have been synthesized re-
cently'®'®!” and the magnetic behavior can be de-
scribed roughly by one-dimensional (1D) Ising
model."? They are paramagnetic as classical 1D sys-
tem with the critical temperature T, = 0. A nonzero
T, was observed if there is a ferromagnetic inter-
chain interaction.'” Theoretically, single chain ferro-
magnetism is also possible if there is a ferromag-
netic interaction between nearby segments and the
chain has a three-dimensional (3D) spatial struc-
ture.'®!” Based on a coarse-grained bond fluctuation
model, we proposed a ferromagnetic polymer
model in good solvents.'” On the simple cubic lat-
tice, chain’s bond length can fluctuate among values
1, VE, or \/C’; in the unit of the lattice constant. The
interactions among monomers are (1) self-avoiding
and (2) spatial nearest neighbor ferromagnetic Ising
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interactions. The model chain undergoes a magnetic
phase transition as well as a spatial conformational
collapse transition at the critical temperature T.° ~
1.37]/ kg for long chains, here the superscript 0 rep-
resents the zero field case. Variable | is the spin—-spin
coupling constant and kg is Boltzmann constant. It
was also found that both magnetic and spatial con-
formational properties are dependent on the exter-
nal field. Different behaviors are found for the chain
at temperatures below and above the zero-field crit-
ical temperature T.0.%°

In this article, the dependence of the magnetization
on external field is investigated based on the coarse-
grained bond fluctuation ferromagnetic Ising chain
model. The Curie temperature 6 is determined based
on the field dependence of magnetization. We find the
chain length dependent Curie temperature 6 can be
fitted by 6 = 1.40 — 4.0 X n °%" (J/kg). The results are
in agreement with that obtained from magnetization-
temperature property at zero field."

Model and simulation method

The 3D Ising chain model on the simple cubic lattice is
described by the following Hamiltonian:

H= - EL';‘O'IU/ - hZ(Ti (1)

Lij]

where o; = *1 are the spin variables at monomers of
the chain. The symbol /1, which adsorbs the external
magnetic field B through h = ugB, is in unit of energy,
where up is the Bohr magneton. The features of the
model are reflected in the spin-spin couplings J;. In
this work, we consider spatial nearest neighbor inter-
actions with J; = | for [ij] nearest neighbor on the
lattice and zero otherwise, i.e., the spin-spin interac-
tions exist only between a pair of spins with spatial
distance one lattice size. Here we consider the ferro-
magnetic case and set the coupling constant | = 1 for
simplification. The excluded volume of the monomer
is also taken into account by the requirement that no
lattice site can be occupied simultaneously by two
or more monomers, which is called self-avoiding. The
spin variable in this model has only two values o; =
*+1, corresponding to the spin quantum number S
=1/2.

The polymer chain is comprised of n + 1 identical
monomers (i.e., n bonds, monomer numbered from 0
to n) consecutively linked with bond length ranging
from 1 to \/6 on the SC lattice. Each monomer occupies
one site of the lattice. The bond between successive
monomers can be taken from a set of 26 allowed bond
vectors obtained from the set {(1,0,0), (1,1,0), (1,1,1)} by
symmetry operations of the cubic lattice.

Change of the configuration contains two aspects:
one is the change of spatial configuration and another
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is the update of spins. The change of the spatial con-
figuration starts by choosing a monomer at random
and then attempts to move it one lattice spacing in one
of the six randomly selected directions: =x, *y, and
+z. This trial move will be accepted if the following
four conditions are satisfied: (1) self-avoidance is
obeyed, (2) the new bond vector still belongs to the
allowed bond set, (3) two bonds do not intersect, and
(4) the Boltzmann factor exp(—AE/k;T) is greater than
a random number uniformly distributed in the inter-
val (0,1), where AE is the change in energy due to the
trial move. To update the spins, we randomly choose
a monomer and flip the spin on it by the Metropolis
algorithm. The time unit used in the work is MC step
(MCS). One MCS includes n + 1 monomer trial move-
ment and n + 1 trial spin flip.

Simulation starts from an initial random configura-
tion at 1 = 0. Then, we slowly increase the field up to
the maximum h,,,, = 2.0 with a very small step Ah.
For every field h, system is updated for total 5001>
MCS and thus 500 independent samples are recorded
with a time interval At = n*> MCS. The final configu-
ration at the previous field is used as the initial con-
figuration for the subsequent field. At last, the simu-
lation results are also averaged over 1000 initial ran-
dom chain configurations. In the work, the
temperature T is in the unit J/kg, and the field / and
energy E are in unit of J.

RESULTS AND DISCUSSIONS

Figures 1(a) and 1(b) show the magnetization-field
((M)-h) curves at temperatures T > T. where no
hysteresis is observed and the chain behaves as a
paramagnet.”” The magnetization M is defined as the
average spin per monomer, i.e., M = " IEoi. Pa-
rentheses ( ) represent average over Monte Carlo sam-
ples. The magnetization increases nonlinearly and sat-
urates to (M) = 1 at enough high field as shown in
Figure 1(a). At the same temperature, the magnetiza-
tion increases faster for a longer chain as shown in
Figure 1(b). We will show that the Curie temperature
0 is of chain length n dependence as discussed below:
6 increases with n (see Fig. 6). Therefore, at any finite
temperature above 6, the temperature is closer to 6 for
a long chain than that for a short chain that makes
long chain more sensitive to external field. Thus, a
long chain has bigger magnetization than a short one
at the same temperature. The (M)-h curve of the Ising
chain model can be described by the Brillouin function
B j(x)/

2j+1 2j+1
<M?>/M,=Bjx) = 2 coth X

2j

! h ! 2
—zf].cot Z—jx (2)
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Figure1 (a) Magnetization-field ((M)-h) curves at different
temperatures T > T.° for chain length n = 200. The lines are
fitting curves of eq. (2). (b) (M)-h curves for different chain
lengths at temperature T = 1.6.

igh
with parameter x = % Here, j is the total angular
B

momentum quantum and g the Lande g-factor. For the
Ising chain model, the saturation magnetization M,
=1 and the Lande g-factor g = 2 (spin system). How-
ever, we get value j > 1/2, since there exist spin—-spin
interactions and the value j increases with decreasing
the temperature T. Under the external field, spin will
align along the field to lower the system’s energy.
From the point of view of the mean-field theory, the
nearest neighbor spins offer an additional magnetic
field h'" and the spin-field coupling is (i + h')o; instead
of the original coupling ho;. Therefore, we get the total
angular momentum quantum j bigger than spin quan-
tum 1/2. Table I gives some values of j for chain of
length n = 200. We estimate the value j by best fitting
the (M)-h curve by eq. (2). However, we find the
curves get worse with the decrease of the temperature
T, especially at weak field region. We find such a
situation still exists even if we decrease the field start-
ing from a high field. One possible reason is that both
spin configuration and spatial configuration change
with the field. As we will show later, the change of
spatial configuration accelerates the change process of
spin configuration, and at lower temperatures, the
process is more profound that makes a deviation from
the Brillouin function. In the following, we will show
the change of spin and spatial configuration of chain.

Figure 2 gives some typical configurations at differ-
ent external magnetic fields. At zero field, the chain is

in an extended coil state. The summation of spin > o;
i=0

roughly equals to zero. It is clear to see that the spins
assemble to form small clusters at the temperature
slightly above T.. This observation confirms our pre-
vious analysis on the dependence of configurational
energy of Ising chain on the temperature,'® where we
find the configurational energy steadily decreases
while the magnetization maintains roughly zero at T
> T.°. With the increase of the external field, the chain
shrinks and the size of spin cluster increases simulta-
neously, as shown in Figures 2(b) and 2(c). At high
field, a sphere-like chain configuration forms and al-
most all spins are parallel to the field. Then configu-
ration changes very slowly with field, as that shown in
Figures 2(d) and 2(e). For the current chain model, it is
clear to see the cooperation of spin and spatial config-
uration: both change with field and accelerate each
other. The phase transition of the Ising chain model is
contributed to the cooperation of spin and spatial
configuration."” We also find the process becomes
more profound at low temperatures.

The initial (zero field) magnetic susceptibility x

dM

= g, atvery weak fields /1 ~ 0 can be easily derived

from eq. (2). At small /i or small x, eq. (2) can be
expressed approximately as

2+

<M > AT (3)

1
using the approximation expression cothy = y + % for

small y and setting (M,) = 1, ¢ = 2, and kp = 1. Therefore,
the magnetic susceptibility

_<M>_2(j+1)
X= " T aT @

is derived at weak fields. The calculated x are pre-
sented in Table I. As we point above, however, eq. (2)
is difficult to describe the behavior of (M)-h curve at
low temperature. Therefore, the magnetic susceptibil-

TABLE 1
Estimated Values of j and Magnetic Susceptibilities x at
Different Temperature for Chain n = 200

T j % Xb
1.4 8.8 4.7 2.5
1.6 3.7 2.0 1.5
1.8 2.2 1.2 1.1
2.0 1.7 0.90 0.88
2.5 1.3 0.61 0.61

? Estimated from j with eq. (4).
P Estimated from linear (M\-h curve.
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Figure 2 Typical chain configurations at different fields h: (a) h = 0.0, (b) h = 0.4, (c) h = 0.6, (d) h = 0.8, and (e) h = 2.0.
Chain length is n = 200 and temperature is T = 1.6. Grey circles are spins parallel to the field /1, whereas white circles are that

antiparallel to the field.

ities y cannot be precisely estimated by eq. (4). To
overcome this difficulty, we have carried out Monte
Carlo simulations at very weak fields where the mag-
netization (M) increase almost linearly with field & and
the curve roughly passes through zero point. The lin-
ear (M)-h curves for chain length n = 100 at different
temperatures are shown in Figure 3. The magnetic
susceptibilities x are calculated from the linear fit of
the curve near zero field. Figure 4 shows the depen-
dence of the magnetic susceptibility y on the temper-
ature T for chains n = 100 and 200. The magnetic
susceptibility of a longer chain is bigger than that of a
shorter chain, which is in agreement with that shown
in Figure 1(b) where the magnetization increases faster
for a longer chain. Some values of magnetic suscepti-
bility x are listed in Table I for comparing with that
obtained from eq. (4). At high temperatures, both give
almost the same results, but at low temperatures close
to the transition temperature, the magnetic suscepti-
bility x obtained from linear fit of (M)-h curve is
smaller.
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Figure 3 Plots of the magnetization (M) as a function of the
external field h at very weak fields for chain of length n
= 100. The standard error 2o is roughly independent of the
field. Straight lines are the linear fitting of simulation data.

The magnetic susceptibility is nearly zero at high
temperature but increases sharply as temperature de-
creases, indicating a paramagnetic—ferromagnetic
transition at low temperature. Above the Curie tem-
perature 6, the magnetic susceptibility can be fitted by
the Curie law

X=7_9 (5)

Therefore, the Curie temperature 6 can be easily ob-
tained from the inverse magnetic susceptibility

1
;=C(T—9) (6)

Figure 5 shows that the magnetic susceptibility of
Ising polymer chain can be well fitted by the Curie
law. And the coefficient C’ in eq. (6), the slope in
Figure 5, also increases with the chain length n. The
Curie temperature 6 is the intercept of the inverse
magnetic susceptibility 1/ x with the temperature axis.
We find that the Curie temperature 6 is of chain length
dependence, in consistence with that calculated from
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Figure 4 Dependence of the magnetic susceptibility x on
the temperature T.
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the temperature dependence of magnetization at zero
field."

Since the Curie temperature is a second-order phase
transition, then according to the finite-size scaling
law,?! it can be scaled as®?

0= 6(x) —an? (7)

with a crossover exponent ¢. Here 6() is the critical
temperature of an infinite system, and the Curie tem-
perature 6 is that of chain length n. With a least-square
fit method and taking account of the error of 6 at finite
length, we obtain 6() = 1.40 = 0.05 and ¢ = 0.619
*+ 0.005 for the Ising polymer chain model. In Figure 6,
we also plot 6 vs. n~* using above exponents 6() and
¢. One can see that the critical temperature (1) can be
well described by the scaling law. The Curie temper-
ature is in agreement with the estimated critical tem-
perature T. = 1.37 = 0.05(//kg)," where the phase
transition at zero field was studied. The exponent ¢ is
also in agreement with our previous estimation ¢
= 0.633."

CONCLUSIONS

The response of magnetic polymer chain to external
magnetic field is simulated based on a bond-fluctuat-
ing SAW chain model with spatial nearest neighbor
ferromagnetic Ising interaction on the simple cubic
lattice. We find that both the magnetic and spatial
conformational properties are dependent on the exter-
nal field /. The magnetization-field curve above Curie
temperature can be described by the Brillouin function
with a quantum number j that depends on the tem-
perature. The zero field magnetic susceptibility can be
determined from the Brillouin function. It can be also
estimated from the linear response of magnetization to
external magnetic field in small field region. We find
both are in consistent with each other at high temper-
atures. The Curie temperature can be expressed as

0.5
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Figure 5 Plots of the inverse magnetic susceptibility 1/ as
a function of the temperature T. Straight lines are the linear
fits according to the Curie law.

Figure 6 Plot of the Curie temperatures 0 vs. n~* for chain
lengths n = 20, 40, 80, 100, 160, 200, and 300. The straight line
6 = 1.40 — 4.0 n~°*" is obtained by least-square fitting of the
data.

0= 0() — an"¢ with 6() = 1.40 = 0.05 for infinite
chain and exponent ¢ = 0.619 = 0.005. The estimated
Curie temperature and the exponent are in consistent
with those determined from the temperature depen-
dence magnetization at zero field.

References

1. Korshak, Y. V.; Medvedeva, T. V.; Ovchinnikov, A. A.; Spector,
V. N. Nature 1987, 326, 370.
2. Miller, J. S.; Calabrese, J. C.; Glatzhofer, D. T.; Epstein, A. J.
J Appl Phys 1988, 63, 2949.
3. Torrance, J. B.; Bagus, P. S.; Johannsen, I.; Nazzal, A. L; Parkin,
S. S. P. ] Appl Phys 1988, 63, 2962.
4. Cao, Y.;Wang, P.; Hu, Z. Y; Li, S.; Zhang, L. Y.; Zhao, J. G. Solid
State Commun 1988, 68, 817.
5. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystal
and Polymers, 2nd ed.; Oxford University Press: New York, 1999.
. Manners, 1. Science 2001, 294, 1664.
. Ramadan, T. A.; Moawad, H. M. ] Appl Polym Sci 1999, 71, 409.
. James, M. ] Phys Chem Solids 2000, 61, 1865.
. Weng, J.; Jiang, L. M.; Sun, W. L, Shen, Z. Q.; Liang, S. Q.
Polymer 2001, 42, 5491.
10. Takahashi, M.; Turek, P.; Nakazawa, Y.; Tamura, M.; Nozawa, K.;
Shiomi, D.; Ishikawa, M.; Kinoshita, M. Phys Rev Lett 1991, 67, 746.
11. Li, W. G.; Wan, M. X. ] Appl Polym Sci 1996, 62, 941.
12. Rajca, A.; Wongsriratanakul, J.; Rajca, S. Science 2001, 294, 1503.
13. Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. ] Am Chem
Soc 2002, 124, 12837.
14. Ung, V. A,; Couchman, S. M.; Jeffery, J. C.; McCleverty, J. A,;
Ward, M. D.; Totti, F.; Gatteschi, D. Inorg Chem 1999, 38, 365.
15. Bu, X. H,; Liu, H.; Du, M.; Zhang, L.; Guo, Y. M.; Shionoya, M.;
Ribas, J. Inorg Chem 2002, 41, 1855.
16. Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli,
R.; Venturi, G.; Vindigni, A.; Rettori, A.; Pini, M. G.; Novak,
M. A. Angew Chem Int Ed 2001, 40, 1760.
17. Miyasaka, H.; Nezu, T.; Sugimoto, K.; Sugiura, K.; Yamashita,
M.; Clérac, R. Inorg Chem 2004, 43, 5486.
18. Garel, T.; Orland, H.; Orlandini, E. Eur Phys J B: Condens Mater
1999, 12, 261.
19. Luo, M. B.; Huang, J. H. ] Chem Phys 2003, 119, 2439.
20. Huang, J. H.; Luo, M. B. Polymer 2004, 45, 2863.
21. Privman, V. Finite Size Scaling and Numerical Simulation of
Statistical Systems; World scientific: Singapore, 1990.
22. Lam, P. M. Phys Rev B: Condens Matter 1987, 36, 6988.

NI TN fo)



